วัสดุที่นําความร้อน มีอะไรบ้าง

วัสดุที่นําความร้อน มีอะไรบ้าง
การนำความร้อน คือการส่งผ่านความร้อนจากจุดที่มีอุณหภูมิสูงกว่าไปยังจุดทีมีอุณหภูมิต่ำกว่า มีวัตถุเป็นตัวกลางโดยวัตถุจะอยู่กับที่ แต่ความร้อนจุค่อยๆ แผ่กระจายไปตามเนื้อวัตถุนั้น เช่น เราจับแก้วน้ำร้อน ตอนแรกๆจะไม่รู้สึกร้อน แต่จะค่อยๆ ร้อนจนจับไม่ได้

Show

วัสดุที่นําความร้อน มีอะไรบ้าง

วัสดุที่นําความร้อน มีอะไรบ้าง
วัสดุที่นำความร้อนได้ เรียกว่า ตัวนำความร้อนซึ่งเป็นวัสดุประเภทโลหะ คือ ตัวกลางที่ยอมให้พลังงานความร้อนไหลผ่านไปได้ดีเรียกว่า ตัวนำความร้อน ตัวนำความร้อนที่ดีได้แก่ วัตถุพวกโลหะ เช่น เงิน , ทองแดง , เหล็ก ฯลฯ
วัสดุที่นําความร้อน มีอะไรบ้าง
วัสดุที่ไม่นำความร้อน เรียกว่า ฉนวนความร้อน วัสดุที่เป็นฉนวนความ คือ ตัวกลางที่ไม่ยอมให้พลังงานความร้อนไหลผ่านหรือไหลผ่านได้น้อยเรียกว่า ฉนวนความร้อน ได้แก่ วัตถุพวก กระเบื้อง , แก้ว , ไม้ร้อน ได้แก่ ไม้ ผ้า พลาสติก
วัสดุที่นําความร้อน มีอะไรบ้าง
เราสามารถนำประโยชน์ของการนำความร้อนมาใช้ในชีวิตประจำวันได้ เช่น ใช้อะลูมิเนียม เหล็ก เหล็กกล้า มาทำภาชนะสำหรับใช้ทำอาหาร วัตถุเหล่านี้สามารถนำความร้อนได้ดี จึงสามารถถ่ายโอนความร้อนให้อาหารได้เร็ว
วัสดุที่นําความร้อน มีอะไรบ้าง
ส่วนวัตถุที่นำความร้อนไม่ดี หรือเป็นฉนวนความร้อนนั้น เราใช้เป็นฉนวนสำหรับป้องกันไม่ให้ความร้อนมาถูกมือเรา เช่น ด้ามตะหลิวทำด้วยไม้ หูหม้อที่มีฉนวนหุ้ม
วัสดุที่นําความร้อน มีอะไรบ้าง
ส่วนภาชนะที่ใส่อาหารนิยมใช้กระป๋อง เพราะกระป๋องเป็นฉนวนความร้อน จึงมีการถ่ายโอนความร้อนได้ไม่ดี จึงช่วยเก็บความร้อนของอาหารให้ร้อนอยู่ได้นานด้วย
วัสดุที่นําความร้อน มีอะไรบ้าง
ผ้านำความร้อนได้ไม่ดีโดยเฉพาะอย่างยิ่งผ้าหนาๆ จึงสามารถใช้ผ้าช่วยในการหยิบจับภาชนะร้อนๆ ได้ผ้าห่มนอนช่วยป้องกันการถ่ายโอนความร้อน จากร่างกายไปสู่สิ่งแวดล้อมจึงทำให้ร่างกายอบอุ่น
วัสดุที่นําความร้อน มีอะไรบ้าง
ปัจจุบันมีผู้ผลิตภาชนะที่ใช้หุงต้มเป็นพวกกระเบื้องและแก้วทนไฟวัสดุเหล่านี้ถ่ายโอนความร้อนได้ไม่ดีเท่าโลหะ แต่เหมาะกับการนำมาใช้กับแหล่งให้พลังงานบางอย่าง เช่น เตาอบ เตาไมโครเวฟ เพราะภาชนะดังกล่าวร้อนช้ากว่าอาหาร และเนื่องจากตัวภาชนะถ่ายโอนความร้อนได้ไม่ดีจึงทำให้ความร้อนจากอาหารถ่ายโอนไปสู่สิ่งแวดล้อมช้า อาหารจึงร้อนได้อยู่นาน

วัสดุที่นําความร้อน มีอะไรบ้าง
   
วัสดุที่นําความร้อน มีอะไรบ้าง

วัสดุที่นําความร้อน มีอะไรบ้าง

วัสดุที่นําความร้อน มีอะไรบ้าง
http://www.atom.rmutphysics.com/charud/oldnews/0/286/3/science/physics/index1.htm

วัสดุที่นําความร้อน มีอะไรบ้าง
 

การนำความร้อนของวัสดุ

เคยสงสัยไหมว่า เวลาที่เรานำทัพพีที่เป็นอลูมิเนียม (ด้ามอลูมิเนียม) ไปคนน้ำร้อนๆ
ในหม้อที่ตั้งไฟอยู่ ทำไมทัพพีจึงร้อน
นั่นก็เป็นเพราะว่าทัพพีนำความร้อนมาสู่มือเรานั่นเอง คือ
ความร้อนถ่ายโอนจากวัสดุที่มีอุณหภูมิสูงกว่าไปยังวัสดุที่มีอุณหภูมิต่ำกว่า
วัสดุที่มีสมบัติเป็นตัวนำความร้อนคือ วัสดุที่ความร้อนผ่านได้ดี
ส่วนวัสดุที่ความร้อนผ่านได้ไม่ดี หรือไม่สามารถผ่านได้
จะแสดงสมบัติเป็นฉนวนความร้อน (ซึ่งทัพพีที่มีด้ามเป็นอลูมิเนียม
นั้นก็เป็นวัสดุที่นำความร้อนได้ดีเช่นกัน)

สมบัติการนำความร้อนของวัสดุ (thermal
conduction) ของวัสดุ สามรถนำไปใช้ประโยชน์ในชีวิตประจำวันได้ เช่น หม้ออลูมิเนียม
กระทะอลูมิเนียม ทัพพีอลูมิเนียม

วัสดุที่เป็นฉนวนความร้อน เช่น ไม้ พลาสติก (plastic)
นำมาทำเป็นหูภาชนะเพื่อสะดวกในการจับถือ ผ้าก็เป็นฉนวนความร้อน
เนื่องจากนำความร้อนได้ไม่ดี ดังนั้นจึงสามารถใช้ผ้าช่วยในการยิบจับภาชนะร้อนๆ
ได้

วัสดุที่นําความร้อน มีอะไรบ้าง

การนำความร้อน (อังกฤษ: Thermal conduction; มักแทนด้วย k, λ หรือ κ) เป็นการถ่ายโอนพลังงานภายใน (Internal energy) ผ่านการชนของอนุภาคในระดับจุลทรรศน์และการเคลื่อนที่ของอิเล็กตรอนภายในวัตถุ ๆ หนึ่ง อนุภาคที่มีการชนกันนี้ซึ่งรวมถึงโมเลกุล อะตอม และอิเล็กตรอนถ่ายโอนพลังงานศักย์และจลน์อย่างไม่เป็นระเบียบในระดับจุลทรรศน์ซึ่งรวมกันเรียกว่าพลังงานภายใน การนำเกิดขึ้นในทุกสถานะ (phase (matter)) ของสสาร ได้แก่ของแข็ง ของเหลว แก๊ส และคลื่น

ความร้อนไหลจากววัตถุที่ร้อนกว่าไปสู่สัตถุที่เย็นกว่าตามธรรมชาติ ตัวอย่างเช่นความร้อนจะถูกนำจากแผ่นให้ความร้อนของเตาไฟฟ้าไปหาด้านใต้ของกระทะที่วางไว้ด้านบน หากไม่มีแหล่งพลังงานจากภายนอก ภายใน หรือระหว่างวัตถุซึ่งคอยขับเคลื่อนอยู่ ความแตกต่างของอุณหภูมิก็จะสลายลงเมื่อเวลาผ่านไปและขะเข้าสู่สภาวะสมดุลทางความร้อน (thermal equilibrium) นั่นก็คืออุณหภูมิมีความเป็นเอกรูปหรือสม่ำเสมอ

ในการนำนั้นความร้อนไหลอยู่ภายในและไหลผ่านตัววัตถุเอง ในทางกลับกันความร้อนที่ถูกถ่ายเทผ่านการแผ่รังสีความร้อนนั้นถูกถ่ายเทระหว่างวัตถุที่อาจอยู่ห่างกัน หรือความร้อนอาจถูกถ่ายเทได้ด้วยทั่งสองวิธีผสมกัน ส่วนการพาความร้อนนั้น (convection) พลังงานภายในถูกขนส่งระหว่างวัตถุด้วยวัสดุที่เป็นพาหะเคลื่อนที่ การนำความร้อนภายในของแข็งเป็นการรวมกันระหว่างการสั่นและการชนกันของโมเลกุล การแผ่และการชนกันของโฟนอน กับการแพร่และการชนกันของอิเล็กตรอนอิสระ (free electron model) การนำความร้อนภายในของไหลเช่นแก็สและของเหลวเกิดจากการชนกันและการแพร่ของโมเลกุล (molecular diffusion) ระหว่างที่เคลื่อนไหลแบบสุ่ม โฟตอนในบริบทนี้ไม่ชนกันและดังนั้นความร้อนที่ถูกถ่ายเทผ่านรังสีแม่เหล็กไฟฟ้าจึงแตกต่างในทางแนวคิดจากการนำความร้อนโดยการแพร่และการชนกันของอนุภาคและโฟนอนในระดับจุลทรรศน์ แต่ความแตกต่างนั้นไม่สามารถสังเกตได้ง่ายเว้นแต่วัสดุนั้นกึ่งโปร่งใส

ในศาสตร์ทางด้านวิศวกรรม การถ่ายเทความร้อนรวมกระบวนการการแผ่รังสีความร้อน การพาความร้อน และการถ่ายเทมวลในบางครั้ง แต่โดยทั่วไปแล้วในสถานการณ์ใด ๆ ก็มักจะเกิดกระบวนการเหล่านี้อย่างน้อยมากกว่าหนึ่งแบบ

สัญลักษณ์สัญนิยมของสภาพนำความร้อน (thermal conductivity) คือ k

ภาพรวม[แก้]

การนำความร้อนในระดับจุลทรรศน์ถือว่าเกิดขึ้นในวัตถุที่นิ่ง หมายความว่าพลังงานศักย์และจลน์จากการเคลื่อนที่ของวัตถุจะนำมาพิจารณาแยกกัน พลังงานภายในแพร่ไปผ่านการปฏิสัมพันธ์ระหว่างอะตอมหรือโมเลกุลที่เคลื่อนที่อย่างรวดเร็วกับอนุภาคใกล้เคียงซึ่งเป็นการถ่ายเทพลังงานจลน์และศักย์ระดับจุลทรรศน์ให้กัน และปริมาณเหล่านี้ถูกนิยามสัมพัทธ์กับวัตถุซึ่งเราถือว่าอยู่นิ่ง การถ่ายเทความร้อนผ่านการนำเกิดจากการชนกันของอะตอมหรือโมเลกุลที่อยู่เคียงกัน การเคลื่อนที่ไปมาอย่างไม่เป็นระเบียบระหว่างอะตอมของอิเล็กตรอนซึ่งไม่ก่อให้เกิดกระแสไฟฟ้าในระดับมหทรรศน์ หรือการชนและการกระเจิงของโฟตอน

ความนำของสัมผัสทางความร้อน (Thermal contact conductance) เป็นการศึกษาการนำความร้อนระหว่างวัตถุแข็งซึ่งสัมผัสกัน อุณหภูมิมักจะมีความต่างกันที่หน้าสัมผัสระหว่างผิวทั้งสอง ปรากฏการณ์นี้เป็นผลมาจากความต้านทานของสัมผัสทางความร้อนที่มีอยู่ระหว่างผิวสัมผัส ความต้านทานความร้อนระหว่างผิว (Interfacial thermal resistance) เป็นการวัดความต้านทานของหน้าสัมผัสต่อการไหลของความร้อนและต่างจากความต้านทานของสัมผัสเพราะยังมีอยู่แม้ในหน้าสัมผัสที่สมบูรณ์แบบแล้วในระดับอะตอม การทำความเข้าใจความต้านทางทางความร้อนที่หน้าสัมผัสระหว่างวัสดุสองอย่างเป็นส่วนที่มีความสำคัญหลักในการศึกษาสมบัติทางความร้อนของวัสดุนั้น หน้าสัมผัสมักส่งผลต่อสมบัติของวัสดุที่เราจะสังเกตเห็นอย่างมีนัยสำคัญ

การถ่ายเทพลังงานระหว่างโมเลกุลอาจเกิดขึ้นจากการชนกันแบบยืดหยุ่นเช่นแบบของไหล หรือผ่านการแพร่ของอิเล็กตรอนอิสระแบบในโลหะ หรือผ่านการสั่นโฟนอนแบบในฉนวน การไหลของพลังงานความร้อน (ฟลักซ์ความร้อน) ในฉนวนความร้อนเกิดขึ้นจากการสั่นโฟนอนเกือบทั้งหมด

โลหะ (เช่น ทองแดง ทองคำขาว ทองคำ ฯลฯ) ส่วนใหญ่นำพลังงานความร้อนได้ดีเนื่องเพราะลักษณะของพันธะเคมีของโลหะ: พันธะโลหะ (ตรงข้ามกับพันธะโคเวเลนต์หรือพันธะไอออนิก) มีอิเล็กตรอนที่เคลื่อนที่ได้อิสระซึ่งสามารถถ่ายเทพลังงานความร้อนผ่านโลหะได้อย่างรวดเร็ว อิเล็กตรอนเหลวของโลหะแข็งที่เป็นตัวนำเป็นตัวที่นำฟลักซ์ความร้อนผ่าน ฟลักซ์โฟนอนยังมีอยู่แต่ถ่ายเทพลังงานน้อยกว่า นอกจากนั้นอิเล็กตรอนยังเป็นสิ่งที่นำกระแสไฟฟ้าผ่านตัวนำของแข็ง ตัวนำไฟฟ้าที่ดีเช่นทองแดงก็นำความร้อนได้ดีเช่นกัน ไฟฟ้าจากความร้อน (Thermoelectricity) เกิดจากปฏิสัมพันธ์ของฟลักซ์ความร้อนกับกระแสไฟฟ้า การนำความร้อนภายในของแข็งเทียบได้โดยตรงกับการแพร่ของอนุภาคในของเหลวที่ไม่มีกระแสการไหล

การถ่ายเทความร้อนภายในแก็สเกิดจากการชนกันของโมเลกุลแก็ส ในกรณีที่ไร้การพาความร้อนซึ่งปกติแล้วข้องเกี่ยวกับเฟสแก็สหรือของไหลที่เคลื่อนที่ การนำความร้อนผ่านเฟสแก็สขึ้นอยู่กับองค์ประกอบและความดันของเฟสเป็นหลัก กล่าวโดยเฉพาะคือมันขึ้นอยู่กับเส้นทางอิสระเฉลี่ยของโมเลกุลแก็สเมื่อเทียบกับขนาดของช่องว่างของแก็สตามที่ถูกกำหนดโดยเลขคนุดเซน (Knudsen number) [1]

วิศวกรนำสภาพนำความร้อน k มาใช้เพื่อบ่งบอกความสามารถในการนำของสื่อกลาง นิยามของ k คือ "ปริมาณความร้อน Q ที่ถ่ายเทตามเวลา (t) ผ่านความหนา (L) ในทิศแนวฉากกับพื้นที่ผิว (A) ซึ่งเกิดจากความแตกต่างของอุณหภูมิ (ΔT) [...]" สภาพนำความร้อนเป็นสมบัติของวัสดุที่ขึ้นอยู่กับเฟส อุณหภูมิ ความหนาแน่น และพันธะโมเลกุลของสื่อกลางตัวนั้นเป็นหลัก สภาพแลกเปลี่ยนความร้อนเป็นจำนวนซึ่งหาได้จากสภาพนำความร้อนและถูกนำมาใช้เพื่อวัดความสามารถในการแลกเปลี่ยนพลังงานความร้อนกับภาวะแวดล้อมของวัตถุนั้น

การนำความร้อนในสภาวะคงที่[แก้]

การนำความร้อนในสภาวะคงที่ (อังกฤษ: Steady-state conduction) เป็นการนำความร้อนรูปแบบหนึ่งซึ่งเกิดขึ้นเมื่อความแตกต่างของอุณหภูมิซึ่งก่อให้เกิดการนำความร้อนนั้นมีค่าคงตัว โดยหลังเวลาสมดุล (Equilibration time) ผ่านไปการกระจายตัวเชิงพื้นที่ของอุณหภูมิ (สนามอุณหภูมิ) ในวัตถุซึ่งนำความร้อนนั้นไม่เปลี่ยนแปลงอีก ดังนั้นอนุพันธ์ย่อยของอุณหภูมิเทียบกับปริภูมินั้นสามารถมีค่าได้ทั้งที่เป็นศูนย์หรือไม่เป็นศูนย์แต่อนุพันธ์ของอุณหภูมิเทียบกับเวลานั้นเท่ากับศุนย์โดยทั่วกัน ปริมาณของความร้อนซึ่งเข้าสู่บริเวณใด ๆ ของวัตถุนั้นเท่ากับปริมาณความร้อนซึ่งออกไปในการนำความร้อนในสภาวะคงที่ (ไม่เช่นนั้นแล้วอุณหภูมิของวัตถุอาจสูงขึ้นหรือต่ำลงขณะที่พลังงานถูกนำออกหรือกักไว้ในบริเวณนั้น)

ตัวอย่างเช่น วัตถุแท่งหนึ่งอาจเย็นที่ปลายหนึ่งและร้อนที่อีกปลาย และหลังจากอยู่ในสภาวะของการนำความร้อนในสภาวะคงที่แล้วเกรเดียนต์เชิงพื้นที่ของอุณหภูมิตามแนวของแท่งนั้นก็จะไม่มีการเปลี่ยนแปลงอีกแม้เวลาผ่านไปและอุณหภูมิที่หน้าตัดตามแนวฉากของการถ่ายเทความร้อน ณ จุดใด ๆ ของแท่งนั้นก็จะมีค่าคงตัว โดยอุณหภูมินี้มีการเปลี่ยนแปลงเชิงเส้นตามตำแหน่งในปริภูมิในกรณีที่ไม่มีการผลิตความร้อนในแท่งนั้น[2]

กฎต่าง ๆ ซึ่งเกี่ยวข้องกับการนำไฟฟ้ากระแสตรงนั้นสามารถนำมาประยุกต์ใช้กับ "กระแสความร้อน" ในการนำความร้อนในสภาวะคงที่ได้โดยตรง เราจึงสามารถเทียบ "ความต้านทานความร้อน" ได้กับความต้านทานไฟฟ้า อุณหภูมิทำหน้าที่คล้ายแรงดันไฟฟ้าและความร้อนที่ถูกถ่ายเทต่อหน่วยเวลา (กำลังความร้อน) สามารถเทียบได้กับกระแสไฟฟ้า ระบบสภาวะคงที่สามารถถูกจำลองเป็นเครือข่ายของความต้านความร้อนที่ต่อกันแบบอนุกรมและขนานซึ่งสามารถเทียบได้กับเครือข่ายของตัวต้านทานกระแสไฟฟ้า สำหรับตัวอย่างของเครือข่ายแบบนี้ ดูวงจรความร้อนความต้านทานบริสุทธิ์ (Lumped-element model)

การนำความร้อนในสภาวะไม่คงที่[แก้]

ดูบทความหลักที่: สมการความร้อน

การนำความร้อนชั่วครู่ (อังกฤษ: Transient conduction) คือวิธีการไหลของพลังงานความร้อนซึ่งเกิดขึ้นเมื่ออุณหภูมิเปลี่ยนตามเวลา ณ บริเวณใด ๆ ของวัตถุ การนำความร้อนชนิดนี้มีชื่อเรียกอีกอย่างว่า "การนำความร้อนในสภาวะไม่คงที่" ซึ่งหมายถึงสนามอุณหภูมิของวัตถุที่เปลี่ยนแปลงขึ้นกับเวลา สภาวะไม่คงที่เกิดขึ้นหลังจากที่อุณหภูมิตรงขอบของวัตถุมีการเปลี่ยนแปลง หรือยังสามารถเกิดขึ้นจากการเปลี่ยนแปลงของอุณหภูมิภายในวัตถุซึ่งเป็นผลจากแหล่งกำเนิดหรือแหล่งระบายความร้อนที่ถูกใส่เข้าไปในวัตถุและทำให้อุณหภูมิที่อยู่รอบแหล่งนั้นเปลี่ยนแปลงตามเวลา

เมื่อมีการรบกวนของอุณหภูมิในลักษณะนี้ อุณหภูมิในระบบก็จะเปลี่ยนแปลงตามเวลาและเคลื่อนไปหาสมดุลใหม่พร้อมกับเงื่อนไขใหม่ หากไม่มีการเปลี่ยนแปลงอีกครั้งหลังถึงจุดสมดุลแล้ว ความร้อนที่ไหลเข้าระบบและไหลออกจากระบบจะเท่ากันและอุณหภูมิที่จุดใด ๆ ของวัตถุก็ไม่เปลี่ยนแปลงอีก เมื่อกระบวนการทั้งหมดเกิดขึ้นแล้ว การนำความร้อนในสภาวะไม่คงที่จะจบลงแต่การนำความร้อนในสภาวะคงที่อาจเกิดขึ้นต่อไปได้หากมีการไหลของความร้อนต่อไป

หากอุณหภูมิภายนอกหรือการผลิตความร้อนภายในมีการเปลี่ยนแปลงที่ฉับไวมากเกินไปจนสมดุลของอุณหภูมิไม่สามารถเกิดขึ้นได้แล้ว ระบบนั้นก็จะไม่มีวันกลับไปสู่สภาวะที่การกระจายตัวของอุณหภูมิไม่เปลี่ยนแปลงตามเวลาและจะคงอยู่ในสภาวะไม่คงที่

การติดเครื่องยนต์ในยานพาหนะเป็นตัวอย่างอันหนึ่งของแหล่งของความร้อนที่ "ถูกเปิด" ภายในวัตถุซึ่งก่อให้เกิดการนำความร้อนในสภาวะไม่คงที่ และจะเปลี่ยนจากการนำความร้อนในสภาวะไม่คงที่เป็นการนำความร้อนในสภาวะคงที่เมื่อเครื่องยนต์ถึงอุณหภูมิทำงาน (Operating temperature) แล้ว อุณหภูมิในเครื่องยนต์และส่วนอื่นของยานพาหนะต่างกันอย่างมากในสมดุลสภาวะคงที่ แต่ไม่มีบริเวณใดในยานพาหนะที่อุณหภูมิจะมีการเปลี่ยนแปลง การนำความร้อนในสภาวะไม่คงที่จบลงหลังจากได้เกิดสภาวะนี้แล้ว

ภาวะภายนอกแบบใหม่สามารถทำให้กระบวนการนี้เกิดขึ้นได้ ตัวอย่างเช่น แท่งทองแดงซึ่งมีการนำความร้อนในสภาวะคงที่ก็จะกลายเป็นการนำความร้อนในสภาวะไม่คงที่ทันทีที่ปลายข้างหนึ่งมีอุณหภูมิที่ต่างจากเดิม เมื่อเวลาผ่านไปสนามของอุณหภูมิภายในแท่งก็จะอยู่ในสภาวะคงที่ใหม่ซึ่งมีเกรเดียนต์ของอุณหภูมิที่คงตัว โดยปกติแล้วก็จะเข้าใกล้เกรเดียนต์ของสภาวะคงที่อันใหม่ในแบบชี้กำลังตามเวลา เมื่อเฟสของ "การนำความร้อนในสภาวะไม่คงที่" จบลง ความร้อนยังสามารถไหลด้วยแรงสูงได้ตราบใดที่ไม่มีการเปลี่ยนแปลงของอุณหภูมิ

ตัวอย่างของการนำความร้อนในสภาวะไม่คงที่ซึ่งไม่จบด้วยการเปลี่ยนเป็นการนำความร้อนในสภาวะคงที่แต่จบด้วยการไม่มีการนำความร้อนต่อเช่น ลูกบอลทองแดงร้อน ๆ ที่ปล่อยลงในหม้อนำมันที่มีอุณหภูมิต่ำ สนามของอุณหภูมิภายในวัตถุเริ่มเปลี่ยนแปลงตามเวลาขณะที่ความร้อนถูกนำออกไปจากโลหะ และความสนใจอยู่ที่การวิเคราะห์การเปลี่ยนแปลงเชิงพื้นที่ของอุณหภูมิภายในวัตถุตามเวลาจนเกรเดียนต์ใด ๆ หายไปทั้งหมด (หรือก็คือลูกบอลมีอุณหภูมิเดียวกันกับน้ำมัน) ในทางคณิตศาสตร์ภาวะนี้ก็จะเข้าใกล้ในแบบชี้กำลัง (approached exponentially) ในทางทฤษฎีก็ต้องใช้เวลาเป็นอนันต์ แต่ในทางปฏิบัติถือว่าจบลงแล้วด้วยระยะเวลาที่สั้นกว่าอย่างมาก ที่จุดจบของกระบวนการไม่มีแหล่งระบายความร้อนอื่นนอกจากส่วนในของลูกบอล (ซึ่งมีอยู่จำกัด) จึงไม่มีการนำความร้อนในสภาวะคงที่เกิดขึ้นต่อ สภาวะนี้ไม่มีวันเกิดขึ้นในเหตุการณ์แบบนี้และกระบวนการจะจบลงเมื่อไม่มีการนำความร้อนใด ๆ เลย

การวิเคราะห์ระบบของการนำความร้อนในสภาวะไม่คงที่นั้นซับซ้อนกว่าระบบในสภาวะคงที่อย่างมาก หากวัตถุนำความร้อนมีรูปร่างแบบง่าย แล้วการแสดงออกและคำตอบทางคณิตศาสตร์เชิงวิเคราะห์จะสามารถทำได้อย่างแม่นยำ (ดูสมการความร้อนสำหรับแนวทางเชิงวิเคราะห์)[3] อย่างไรก็ตามเรามักจำเป็นต้องนำทฤษฎีแบบประมาณมาใช้หรือต้องพึ่งพาการวิเคราะห์เชิงตัวเลขของคอมพิวเตอร์เนื่องด้วยสภาพนำความร้อนที่มีความแตกต่างกันเองภายในวัตถุรูปร่างซับซ้อน (นั่นคือ วัตถุที่ซับซ้อนส่วนใหญ่ กลไก หรือเครื่องต่าง ๆ ของวิศวกรรม) วิธีการทางกราฟที่เป็นที่นิยมแบบหนึ่งคือการใช้แผนภูมิไฮสเลอร์ (Heisler Chart)

บางครั้งปัญหาเกี่ยวกับการนำความร้อนในสภาวะไม่คงที่จะง่ายลงอย่างมากถ้าสามารถระบุบริเวณที่ร้อนขึ้นหรือเย็นลงได้ เพราะสภาพนำความร้อนในบริเวณนั้นมีค่ามากกว่าของวิถีความร้อนที่เข้าบริเวณนั้น บริเวณที่มีสภาพนำสูงจึงสามารถถูกปฏิบัติเป็นแบบจำลองความจุแบบก้อน (lumped capacitance model) ได้ โดยถือได้ว่าเป็น "ก้อน" ของวัสดุที่มีความจุความร้อนแบบง่ายซึ่งประกอบไปด้วยความจุความร้อน (heat capacity) รวมของมัน บริเวณนี้ร้อนขึ้นหรือเย็นลงระหว่างกระบวนการแต่ไม่มีการแปรผันของอุณหภูมิที่มีนัยสำคัญภายในขอบเขตของบริเวณ (เมื่อเทียบกับส่วนอื่น ๆ ของระบบ) นี่เป็นเพราะความนำที่สูงกว่าอย่างมาก ดังนั้นระหว่างการนำความร้อนในสภาวะไม่คงที่อุณหภูมิตลอดบริเวณที่นำความร้อนจะเปลี่ยนแปลงอย่างสม่ำเสมอในปริภูมิและใช้เวลาแบบชี้กำลังง่าย ๆ ตัวอย่างของระบบเหล่านี้คือระบบที่ปฏิบัติตัวตามกฎการเย็นตัวของนิวตัน (Newton's law of cooling) ระหว่างการเย็นลงในสภาวะไม่คงที่ (หรือในทางกลับกันระหว่างการทำความร้อน) วงจรความร้อนที่สมมูลกับระบบนี้ประกอบไปด้วยตัวเก็บ (capacitor) ที่ต่อแบบอนุกรมกับตัวต้านทาน ส่วนที่เหลือของระบบซึ่งมีความต้านทานความร้อนสูง (สภาพนำที่ต่ำกว่าเมื่อเทียบกัน) ทำหน้าที่เป็นตัวต้านทานในวงจรนั้น

การนำความร้อนเชิงสัมพัทธภาพ[แก้]

ทฤษฎีการนำความร้อนเชิงสัมพัทธภาพ (อังกฤษ: Relativistic conduction) เป็นแบบจำลองที่เข้ากันกับทฤษฎีสัมพัทธภาพพิเศษ ตลอดเวลาส่วนใหญ่ของศตวรรษที่ผ่านมา สมการฟูริเอร์เป็นที่รู้จักว่าขัดกับทฤษฎีสัมพัทธภาพเพราะมีการยอมรับถึงความเร็วของการแพร่สัญญาณความร้อนที่มีค่าเป็นอนันต์ ตัวอย่างตามสมการฟูริเอร์เช่น จุดที่อยู่ไกลเป็นอนันต์จะสามารถรู้สึกถึงพัลส์ของความร้อนที่จุดกำเนิดได้ทันที อัตราเร็วของการแพร่ข้อมูลเร็วกว่าอัตราเร็วของแสงในสุญญากาศซึ่งไม่สามารถยอมรับได้ในกรอบของสัมพัทธภาพ

การนำความร้อนเชิงควอนตัม[แก้]

เสียงที่สอง (Second sound) เป็นปรากฏการณ์ทางกลศาสตร์ควอนตัมที่การถ่ายเทความร้อนเกิดขึ้นผ่านการเคลื่อนที่คล้ายคลื่นแทนการแพร่ซึ่งเป็นกลไกปกติ ความร้อนแทนตัวเป็นความดันในคลื่นเสียงปกติ นี่นำไปสู่สภาพนำความร้อนที่สูงมาก "เสียงที่สอง" มีชื่อเรียกเป็นอย่างนี้เพราะการเคลื่อนที่แบบคลื่นของความร้อนนั้นคล้ายกับการแพร่ของคลื่นเสียงในอากาศ

กฎของฟูริเอร์[แก้]

กฎของฟูริเอร์ (อังกฤษ: Fourier's law) หรือกฎของการนำความร้อนกล่าวว่าอัตราการถ่ายเทความร้อนผ่านวัสดุเป็นสัดส่วนกับเกรเดียนต์ลบของอุณหภูมิและพื้นที่ตั้งฉากกับเกรเดียนต์ที่ความร้อนไหลผ่าน เราสามารถแสดงกฎนี้เป็นรูปแบบสมมูลสองรูปแบบ: รูปปริพันธ์ซึ่งเราดูที่ปริมาณของพลังงานที่ไหลเข้าหรือออกกจากวัตถุรวมทั้งหมด และรูปอนุพันธ์ซึ่งเราดูที่อัตราไหลหรือฟลักซ์ของพลังงานเฉพาะบริเวณ (local)

กฎการเย็นตัวของนิวตันเทียบได้เป็นกฎของฟูริเอร์แบบวิยุต (discrete) ในขณะที่กฎของโอห์มเทียบได้เป็นกฎของฟูริเอร์สำหรับไฟฟ้า และกฎการแพร่ของฟิค (Fick's laws of diffusion) ก็เทียบได้เป็นแบบสำหรับเคมี

รูปอนุพันธ์[แก้]

กฎการนำความร้อนของฟูริเอร์รูปอนุพันธ์แสดงให้เห็นว่าความหนาแน่นของฟลักซ์ความร้อน (heat flux) เฉพาะบริเวณ เท่ากับผลคูณของสภาพนำความร้อน

วัสดุที่นําความร้อน มีอะไรบ้าง
และเกรเดียนต์ลบเฉพาะบริเวณของอุณหภูมิ ความหนาแน่นของฟลักซ์ความร้อนคือปริมาณของพลังงานที่ไหลผ่านหน่วยพื้นที่ต่อหน่วยเวลา

โดย (รวมหน่วย SI)

คือความหนาแน่นของฟลักซ์ความร้อนเฉพาะบริเวณ W·m−2 คือสภาพนำความร้อนของวัสดุ W·m−1·K−1, คือเกรเดียนต์อุณหภูมิ K·m−1.

สภาพนำความร้อน มักถูกถือว่าเป็นค่าคงตัวแต่ก็ไม่เป็นจริงเสมอไป ถึงแม้สภาพนำความร้อนของวัสดุโดยทั่วไปแล้วจะแปรผันกับอุณหภูมิ การแปรผันมีขนาดเล็กแม้อุณหภูมิจะเปลี่ยนไปอย่างมีนัยสำคัญสำหรับวัสดุทั่ว ๆ ไป ส่วนสภาพนำความร้อนของวัสดุแอนไอโซทรอปิก (Anisotropy) โดยปกติเปลี่ยนแปลงตามทิศทางของวัตถุ ในกรณีนี้ ถูกแทนเป็นเทนเซอร์ (tensor) อันดับสอง ส่วน ในวัสดุไม่สม่ำเสมอ (non-uniform) เปลี่ยนแปลงตามตำแหน่งในปริภูมิ

สำหรับการใช้งานแบบง่าย กฎของฟูริเอร์ในรูปมิติเดียวมักถูกนำมาใช้ ในทิศทาง x

ในวัสดุไอโซทรอปิก กฎของฟูริเอร์นำไปสู่สมการความร้อน:

และมีผลเฉลยหลักมูล (fundamental solution) ซึ่งเป็นที่รู้จักในชื่อเคอร์เนลความร้อน (heat kernel)

รูปปริพันธ์[แก้]

เมื่อปริพันธ์กฎของฟูริเอร์รูปอนุพันธ์ตามพื้นผิวทั้งหมดของวัสดุ เราจะได้กฎของฟูริเอร์รูปปริพันธ์:

วัสดุที่นําความร้อน มีอะไรบ้าง

โดย (รวมหน่วย SI):

เมื่อเราปริพันธ์สมการเชิงอนุพันธ์ด้านบนระหว่างจุดปลายสองจุดสำหรับวัสดุเอกพันธุ์ (homogeneous) หนึ่งมิติที่อุณหภูมิคงตัว จะได้อัตราไหลของความร้อนเป็น:

โดย

คือช่วงเวลาที่ความร้อนปริมาณ ใช้ไหลผ่านหน้าตัดขวางของวัสดุ คือพื้นที่หน้าตัด คือความแตกต่างของอุณหภูมิที่จุดปลาย คือระยะทางระหว่างจุดปลาย

กฎนี้เป็นรากฐานสำหรับการอนุพัทธ์หาสมการความร้อน

ความนำความร้อน[แก้]

กฎของฟูริเอร์สามารถเขียนได้เป็น:

เมื่อ

โดย U คือความนำความร้อน (conductance) หน่วยเป็น W/(m2 K).

ส่วนกลับของความนำคือความต้านทาน (resistance) โดยกำหนดว่า:

ความต้านทานบวกรวมกันเมื่อมีชั้นนำความร้อนหลายชั้นอยู่ระหว่างบริเวณร้อนและเย็นเพราะ A และ Q ของทุก ๆ ชั้นมีค่าเท่ากัน

ในทางเดียวกัน ความสัมพันธ์ระหว่างความนำรวมกับความนำของแต่ละชั้นคือ:

ดังนั้นสูตรดังต่อไปนี้มักถูกนำมาใช้เมื่อเผชิญกับการนำความร้อนผ่านผนังหลายชั้น:

ในส่วนของการนำความร้อนจากของไหลสู่ของไหลผ่านผนังกั้นชนิดหนึ่ง บางครั้งจำเป็นที่จะต้องพิจารณาความนำความร้อนของฟิล์ม (thin film) ของไหลบาง ๆ ที่อยู่นิ่งข้างแผ่นกั้น ของไหลที่เป็นฟิล์มบางนี้จำกัดปริมาณได้ยากเพราะลักษณะต่าง ๆ นั้นขึ้นอยู่กับเงื่อนไขที่ซับซ้อนเช่นความปั่นป่วน (turbulence) และความหนืด แต่บางครั้งเมื่อต้องจัดการกับผนังกั้นที่มีความนำสูง แผ่นฟิล์มของไหลนี้ก็สามารถส่งผลต่อคุณสมบัติความนำได้อย่างมีนัยสำคัญ

การแทนด้วยคุณสมบัติที่ไม่ขึ้นกับปริมาณ[แก้]

สมการที่ให้นิยามความนำไว้ด้านบนด้วยคุณสมบัติที่ขึ้นกับปริมาณ (extensive properties) สามารถถูกนำมาจัดรูปใหม่ให้ใช้นิยามจากคุณสมบัติที่ไม่ขึ้นกับปริมาณได้ (intensive properties) สูตรสำหรับความนำความร้อนในอุดมคตินั้นควรผลิตค่าที่มีมิติซึ่งเป็นอิสระจากระยะทาง อย่างเช่นสูตรของความต้านทานไฟฟ้า และความนำไฟฟ้า ในกฎของโอห์ม

จากสูตรเรื่องไฟฟ้า โดย ρ คือสภาพต้านทาน, x คือความยาว และ A คือพื้นที่หน้าตัด กับ โดย G คือความนำ, k คือสภาพนำ, x คือความยาว และ A คือพื้นที่หน้าตัด

ในส่วนของความร้อนนั้น

โดย U คือความนำความร้อน

เราสามารถเขียนกฎของฟูริเอร์ได้เป็นอีกแบบ:

ซึ่งเทียบได้กับกฎของโอห์ม หรือ

ส่วนกลับของความนำคือความต้านทาน R ซึ่งถูกกำหนดเป็น:

เทียบได้กับกฎของโอห์ม

กฎของการรวมความต้านแทนและความนำของการไหลของความร้อนและกระแสไฟฟ้า (ต่อกันแบบอนุกรมหรือขนาน) เป็นแบบเดียวดัน

เปลือกทรงกระบอก[แก้]

การนำความร้อนผ่านเปลือกทรงกระบอก (เช่น ท่อ) สามารถคำนวณได้จากรัศมีภายใน , รัศมีภายนอก , ความยาว และความแตกต่างของอุณหภูมิระหว่างผนังภายในและภายนอก .

พื้นที่ผิวของทรงกระบอกคือ

เมื่อเรานำมาใส่ในกฎของฟูริเอร์:

และจัดรูปใหม่:

อัตราการถ่ายเทความร้อนจะเท่ากับ:

ความต้านทานความร้อนคือ:

และ โดย เป็นรัศมีเฉลี่ยแบบล็อก

เปลือกทรงกลม[แก้]

เราสามารถคำนวณการนำความร้อนผ่านพื้นผิวทรงกลมได้ในลักษณะเดียวกันจากรัศมีภายใน และรัศมีภายนอก

พื้นที่ผิวของทรงกลมคือ:

และเมื่อแก้สมการในลักษณะเดียวกันกับที่ทำสำหรับเปลือกทรงกระบอก (ดูข้างบน) แล้วจะได้:

การนำความร้อนในสภาวะไม่คงที่[แก้]

ดูบทความหลักที่: สมการความร้อน

การถ่ายโอนความร้อนระหว่างผิว[แก้]

[ต้องการอ้างอิง]

การถ่ายเทความร้อนที่ผิวสัมผัสถือว่าเป็นการไหลของความร้อนในสภาวะไม่คงที่ เลขบิโอต์ (Biot number) เป็นสิ่งสำคัญในการทำความเข้าใจพฤติกรรมของระบบสำหรับการวิเคราะห์ปัญหานี้ โดยเลขบิโอต์ถูกกำหนดเป็น: หากเลขบิโอต์ของระบบมีค่าน้อยกว่า 0.1 วัสดุนั้นจะประพฤติตามการเย็นตัวแบบนิวตันหรือเราสามารถเพิกเฉยต่อเกรเดียนต์ของอุณหภูมิภายในวัสดุได้ หากเลขบิโอต์มีค่ามากกว่า 0.1 ระบบนั้นจะประพฤติตามผลเฉลยแบบอนุกรม โปรไฟล์อุณหภูมิเทียบกับเวลาสามารถอนุพัทธ์มาได้จากสมการ

ซึ่งกลายเป็น


สัมประสิทธิ์การถ่ายเทความร้อน (heat transfer coefficient) h มีหน่วยเป็น และแทนการถ่ายเทของความร้อนที่ผิวสัมผัสระหว่างวัสดุสองอย่าง ค่านี้ต่างกันไปตามแต่ละผิวสัมผัสและเป็นสิ่งที่สำคัญในการทำความเข้าใจการไหลของความร้อนที่ผิวสัมผัส

เราสามารถวิเคราะห์ผลเฉลยแบบอนุกรม (series solution) ได้ด้วยโนโมแกรม (nomogram) ในโนโมแกรมมีอุณหภูมิสัมพัทธ์เป็นพิกัด y และเลขฟูริเอร์ (Fourier number) ซึ่งคำนวณจาก

ยิ่งเลขบิโอต์มีค่ามากขึ่น เลขฟูริเอร์จะมีค่าน้อยลง เพื่อหาโปรไฟล์ของอุณหภูมิเทียบกับเวลาเราต้องทำตามห้าขั้นตอนดังต่อไปนี้

  1. คำนวณหาเลขบิโอต์
  2. กำหนดว่าความลึกสัมพัทธ์อันไหนส่งผลมากที่สุด x หรือ L.
  3. แปลงเวลาเป็นเลขฟูริเอร์
  4. แปลง เป็นอุณหภูมิสัมพัทธ์พร้อมกับเงื่อนไขขอบเขต
  5. เปรียบเทียบจุดต่าง ๆ ที่กำหนดและตามรอยหาเลขบิโอต์ที่กำหนดไว้บนโนโมแกรม

การประยุกต์ใช้การนำความร้อน[แก้]

การชุบแข็งแบบสาด[แก้]

การชุบแข็งแบบสาด (อังกฤษ: Splat cooling) เป็นวิธีการทำให้ละอองของวัสดุหลอมเหลวขนาดเล็กเย็นตัวลงอย่างรวดเร็วผ่านการสัมผัสพื้นผิวเย็นอย่างฉับพลัน อนุภาคของวัสดุนี้ผ่านกระบวนการเย็นตัวลงที่มีลักษณะพิเศษ โดยมีโปรไฟล์อุณหภูมิที่ เป็นอุณหภูมิเริ่มต้นและอุณหภูมิสูงสุดที่ และที่ และ อุณหภูมิ และมีโปรไฟล์ความร้อนที่ ของ เป็นเงื่อนไขขอบเขต การชุบแข็งแบบสาดจบลงที่อุณหภูมิในสภาวะคงที่ และมีรูปแบบคล้ายกับสมการการแพร่แบบเกาส์ (Gaussian diffusion equation) โปรไฟล์ของอุณหภูมิเทียบกับตำแหน่งและเวลาของการเย็นตัวแบบนี้แปรผันกับ:

การชุมแข็งแบบสาดเป็นแนวคิดพื้นฐานที่มีการนำไปใช้ในทางปฏิบัติในรูปของการพ่นเคลือบด้วยความร้อน เราสามารถเขียนสัมประสิทธิ์สภาพแพร่ความร้อน (thermal diffusivity) ซึ่งแทนด้วย เป็น ได้ ซึ่งแปลว่าค่านี้เปลี่ยนแปลงไปตามชนิดของวัสดุ[4][5]

การชุบแข็งโลหะ[แก้]

การชุบแข็งโลหะ (อังกฤษ: Metal quenching) เป็นกระบวนการถ่ายเทความร้อนในสภาวะไม่คงที่แบบหนึ่งซึ่งแสดงด้วยแผนภาพเวลา-อุณหภูมิ-การเปลี่ยนเฟส (Isothermal transformation diagram) (TTT) เราสามารถควบคุมกระบวนการเย็นตัวได้เพื่อปรับเปลี่ยนเฟสของวัสดุที่เหมาะสม ตัวอย่างเช่น การชุบแข็งเหล็กกล้าอย่างเหมาะสมสามารถแปลงสารออสเทไนต์ (austenite) เป็นมาร์เทนไซต์ (martensite) ในสัดส่วนที่ต้องการได้ซึ่งทำให้ได้ผลเป็นวัสดุที่แข็งและทนทานมาก เพื่อให้ได้ผลดังนี้เราจำเป็นต้องชุบแข็งที่ "จมูก" (หรือ ยูเทกติก (Eutectic)) ของแผนภาพ TTT เวลาที่วัสดุต่าง ๆ ใช้ชุบแข็งหรือเลขฟูริเอร์นั้นต่างกันไปในทางปฏิบัติเพราะวัสดุต่าง ๆ มีเลขบิโอต์ต่างกัน[6] อุณหภูมิชุบแข็งของเหล็กกล้า (steel) มีค่าตั้งแต่ 200 °C ถึง 600 °C เราจำเป็นต้องกำหนดเลขฟูริเอร์จากเวลาการชุบแข็งที่ต้องการ อุณหภูมิลดสัมพัทธ์ (temperature drop) ที่ต้องการ และเลขบิโอต์เพื่อให้สามารถควบคุมเวลาชุบแข็งและเลือกสื่อในการชุบแข็งที่เหมาะสมได้ เราสามารถหาของเหลวที่เหมาะสมต่อการเป็นสื่อในการชุบแข็งได้ผ่านการคำนวณสัมประสิทธิ์ของการถ่ายเทความร้อนจากเลขบิโอต์[7]

กฎข้อที่ศูนย์ของอุณหพลศาสตร์[แก้]

กฎข้อที่ศูนย์ของอุณหพลศาสตร์ (อังกฤษ: Zeroth law of thermodynamics) สามารถถูกกล่าวในแบบที่มุ่งความสนใจในเรื่องของการนำความร้อนโดยตรง เบลิน (1994) เขียนว่า "... กฎข้อที่ศูนย์สามารถถูกกล่าวเป็น:

ผนังไดอะเทอร์มัลทุกอันสมมูลกัน"[8]

ผนังไดอะเทอร์มัล (diathermal wall) คือการเชื่อมต่อทางกายภาพซึ่งให้ความร้อนเคลื่อนระหว่างวัตถุสองวัตถุได้ ในที่นี้ผนังไดอะเทอร์มัลของเบลินหมายถึงผนังที่เชื่อมต่อวัตถุสองวัตถุเท่านั้นเข้าด้วยกัน โดยเฉพาะผนังนำ (conductive wall)

'กฎข้อที่ศูนย์' ซึ่งถูกกล่าวแบบนี้เป็นข้อความเชิงทฤษฎีในอุดมคติ และผนังทางกายภาพของจริงนั้นอาจมีความผิดปกติซึ่งทำให้ไม่ประพฤติตามความทั่วไป

ตัวอย่างเช่น วัสดุของผนังนั้นจะต้องไม่เปลี่ยนเฟสที่อุณหภูมิซึ่งนำความร้อนไม่ว่าเป็นการระเหยหรือการหลอมละลาย แต่ก็ต่อเมื่อพิจารณาเพียงสมดุลความร้อนและไม่เร่งรีบกับเวลาเท่านั้น แล้วสภาพนำความร้อนของวัสดุต่าง ๆ ก็ไม่มีความสำคัญมากนักและตัวนำความร้อนใด ๆ ก็ดีพอกัน กลับกัน อีกแง่มุมของกฎข้อที่ศูนย์คือผนังไดอะเทอร์มัลหนึ่งจะเมินเฉยต่อสภาวะและลักษณะของอ่างความร้อน (heat bath) เมื่อกำหนดข้อจำกัดที่เหมาะสม เช่นหลอดแก้วของปรอทวัดอุณหภูมิทำหน้าที่เป็นผนังไดอะเทอร์มัลไม่ว่าจะใช้ในแก๊สหรือของเหลว แต่ก็ต่อเมื่อแก้วไม่ละลายหรือถูกกัดกร่อน

ความแตกต่างเหล่านี้เป็นหนึ่งในลักษณะพิเศษซึ่งเป็นนิยามของการถ่ายเทความร้อน ในแง่หนึ่ง มันเป็นสมมาตร (Symmetry (physics)) ของการถ่ายเทความร้อน

อุปกรณ์ซึ่งเกี่ยวข้องกับการนำความร้อน[แก้]

เครื่องวิเคราะห์สภาพนำไฟฟ้า[แก้]

คุณสมบัติการนำความร้อนของแก๊สใด ๆ ภายใต้ความดันและอุณหภูมิภาวะมาตรฐานเป็นค่าคงที่ เราขึงสามารถนำคุณสมบัตินี้ของแก๊สหรือส่วนผสมของแก๊สอ้างอิงที่รู้จักชนิดหนึ่งมาใช้ในการรับรู้ (sensor) เช่นเครื่องวิเคราะห์สภาพนำไฟฟ้า (Thermal conductivity analyzer)

เครื่องนี้ทำงานบนหลักการของวงจรสะพานแบบวีตสโตน (Wheatstone bridge) ซึ่งประกอบด้วยเส้นใยสี่เส้นที่มีความต้านทานไฟฟ้าเท่ากัน เมื่อใดที่มีแก๊สไหลผ่านเครือข่ายเส้นใยนี้แล้วความต้านทานของพวกมันจะเปลี่ยนตามสภาพนำความร้อนที่เปลี่ยนไป ดังนั้นจึงทำให้เอาต์พุตความต่างศักย์สุทธิของวงจรสะพานเปลี่ยนไป และเราสามารถนำเอาต์พุตความต่างศักย์ที่ได้ไปเทียบกับฐานข้อมูลเพื่อระบุว่าแก๊สตัวอย่างนั้นเป็นแก๊สชนิดใด

ตัวรับรู้แก๊ส[แก้]

หลักการของสภาพนำความร้อนของแก๊สยังสามารถนำมาใช้วัดความเข้มข้นของแก๊สชนิดหนึ่งในส่วนผสมระหว่างแก๊สสองชนิดได้

หลักการทำงานของตัวรับรู้แก๊ส (Gas sensor) คือ หากแก๊สชนิดเดียวกันมีอยู่ตลอดทั้งเส้นใยของวงจรสะพานแล้ว เส้นใยทุกเส้นจะคงอุณหภูมิไว้เท่ากันและจึงคงความต้านทานไฟฟ้าไว้เท่าเดิม วงจรสะพานจึงสมดุล แต่ทว่าหากตัวอย่างแก๊สที่ต่างกัน (หรือส่วนผสมของแก๊ส) ถูกปล่อยให้เคลื่อนที่ผ่านเส้นใยสองเส้นชุดหนึ่งและแก๊สที่เรานำมาใช้อ้างอิงถูกปล่อยผ่านเส้นใยอีกชุดหนึ่งแล้ว วงจรสะพานจะเสียสมดุลและเอาต์พุตความต่างศักย์สุทธิที่ได้ออกมาจากวงจรก็จะสามารถนำไปเทียบในฐานข้อมูลเพื่อระบุส่วนประกอบของแก๊สตัวอย่างได้

ด้วยกลวิธีนี้ เราสามารถระบุตัวอย่างแก๊สที่ไม่รู้จักหลายชนิดได้ด้วยการเปรียบเทียบสภาพนำความร้อนของพวกมันกับแก๊สอ้างอิงอื่น ๆ ที่เรารู้สภาพนำความร้อนของมัน แก๊สอ้างอิงที่ถูกใช้บ่อยที่สุดคือแก๊สไนโตรเจนเพราะสภาพนำความร้อนของแก๊สที่พบเจอได้ทั่วไปส่วนใหญ่ (ยกเว้นแก๊สไฮโดรเจนและฮีเลียม) มีค่าใกล้เคียงกับของแก๊สไนโตรเจน

ดูเพิ่ม[แก้]

  • รายการของสภาพนำความร้อน (List of thermal conductivities)
  • การนำไฟฟ้า
  • สมการการแพร่-การพา (Convection diffusion equation)
  • ค่า R (ฉนวน) (R-value (insulation))
  • ท่อความร้อน
  • กฎการแพร่ของฟิค (Fick's law of diffusion)
  • การนำความร้อนเชิงสัมพัทธภาพ (Relativistic heat conduction)
  • สมการเชอร์ชิล-เบิร์นสไตน์ (Churchill–Bernstein equation)
  • เลขฟูริเอร์ (Fourier number)
  • เลขบิโอต์ (Biot number)
  • การแพร่เท็จ (False diffusion)

อ้างอิง[แก้]

  1. Dai; และคณะ (2015). "Effective Thermal Conductivity of Submicron Powders: A Numerical Study". Applied Mechanics and Materials. 846: 500–505. doi:10.4028/www.scientific.net/AMM.846.500. S2CID 114611104.
  2. Bergman, Theodore L.; Lavine, Adrienne S.; Incropera, Frank P.; Dewitt, David P. (2011). Fundamentals of heat and mass transfer (7th ed.). Hoboken, NJ: Wiley. ISBN 9780470501979. OCLC 713621645.
  3. Exact Analytical Conduction Toolbox มีนิพจน์ทางคณิตศาสตร์ที่หลากหลายสำหรับการนำความร้อนในสภาวะไม่คงที่ รวมไปถึงขั้นตอนวิธีและโค้ดคอมพิวเตอร์ที่ไว้หาค่าตัวเลขที่แม่นยำ
  4. Sam Zhang; Dongliang Zhao (19 November 2012). Aeronautical and Aerospace Materials Handbook. CRC Press. pp. 304–. ISBN 978-1-4398-7329-8. สืบค้นเมื่อ 7 May 2013.
  5. Martin Eein (2002). Drop-Surface Interactions. Springer. pp. 174–. ISBN 978-3-211-83692-7. สืบค้นเมื่อ 7 May 2013.
  6. Rajiv Asthana; Ashok Kumar; Narendra B. Dahotre (9 January 2006). Materials Processing and Manufacturing Science. Butterworth–Heinemann. pp. 158–. ISBN 978-0-08-046488-6. สืบค้นเมื่อ 7 May 2013.
  7. George E. Totten (2002). Handbook of Residual Stress and Deformation of Steel. ASM International. pp. 322–. ISBN 978-1-61503-227-3. สืบค้นเมื่อ 7 May 2013.
  8. Bailyn, M. (1994). A Survey of Thermodynamics, American Institute of Physics, New York, ISBN 0-88318-797-3, หน้า 23.

  • Dehghani, F 2007, CHNG2801 – Conservation and Transport Processes: Course Notes, University of Sydney, Sydney
  • John H Lienhard IV and John H Lienhard V, 'A Heat Transfer Textbook', Fifth Edition, Dover Pub., Mineola, NY, 2019 [1]

แหล่งข้อมูลอื่น[แก้]

  • Heat conduction – Thermal-FluidsPedia
  • Newton's Law of Cooling โดย Jeff Bryant อิงจากโปรแกรมโดย Stephen Wolfram, Wolfram Demonstrations Project.

โลหะนําความร้อน มีอะไรบ้าง

วัตถุที่นำความร้อนได้ดีที่สุด คือ เพชร ตามมาด้วย เงิน ทองคำ อะลูมิเนียม ทองเหลือง อิฐแดง และผ้าขนสัตว์ เรียงตามลำดับ

การนําความร้อนของวัสดุ มีอะไรบ้าง

การนำความร้อนของวัสดุ เป็นการถ่ายโอนความร้อนจากบริเวณที่มีอุณหภูมิสูงกว่า ไปยังบริเวณที่มีอุณหภูมิต่ำกว่า โดยไม่ผ่านอนุภาคของวัสดุ วัสดุที่ความร้อนถ่ายโอนผ่านได้ดี เรียกว่า ตัวนำความร้อน มักเป็นโลหะ เช่น เงิน ทองแดง ทองคำ เหล็ก เป็นต้น วัสดุที่ความร้อนถ่ายโอนผ่านได้ไม่ดี เรียกว่า ฉนวนความร้อน เช่น พลาสติก ไม้ แก้ว ผ้า ...

วัสดุที่ไม่นําความร้อน มีอะไรบ้าง

ฉนวนความร้อนคือ วัสดุที่ไม่ยอมให้พลังงานความร้อนไหลผ่านได้น้อย ตัวอย่างเช่น แก้ว, ไม้, กระเบื้อง, ผ้า

วัสดุที่เป็นฉนวนความร้อน มีอะไรบ้าง

วัสดุที่ใช้ทำฉนวนกันความร้อน.
อลูมิเนียมฟอยล์.
ใยแก้ว.
เซลลูโลส.
แคลเซี่ยมซิลิเกต.
เวอร์มิคูไลท์.
เซรามิคโค้ตติ้ง.