ระบบนิเวศประกอบด้วยสิ่งมีชีวิตอะไรบ้าง

จากวิกิพีเดีย สารานุกรมเสรี

พืดหินปะการังเป็นระบบนิเวศทะเลอย่างหนึ่ง

ระบบนิเวศ คือกลุ่มอินทรีย์ (พืช สัตว์และจุลินทรีย์) ร่วมกับองค์ประกอบอชีวนะของสิ่งแวดล้อมของพวกมัน (เช่น อากาศ น้ำและดินอนินทรีย์) ซึ่งมีปฏิสัมพันธ์กันเป็นระบบ[1] ถือว่า ส่วนประกอบชีวนะและอชีวนะเชื่อมกันผ่านวัฏจักรสารอาหารและการถ่ายทอดพลังงาน[2] ระบบนิเวศนิยามเป็นเครือข่ายปฏิสัมพันธ์ระหว่างอินทรีย์ด้วยกันและระหว่างอินทรีย์กับสิ่งแวดล้อม[3] ระบบนิเวศมีขนาดเท่าใดก็ได้ แต่ปกติครอบคลุมพื้นที่เฉพาะจำกัด[4] แม้นักวิทยาศาสตร์บางส่วนกล่าวว่า ทั้งโลกก็เป็นระบบนิเวศหนึ่งด้วย[5]

พลังงาน น้ำ ไนโตรเจนและดินอนินทรีย์เป็นอีกส่วนประกอบอชีวนะของระบบนิเวศ พลังงานซึ่งถ่ายทอดผ่านระบบนิเวศได้มาจากดวงอาทิตย์เป็นหลัก โดยทั่วไปเข้าสู่ระบบผ่านการสังเคราะห์ด้วยแสง ซึ่งกระบวนการนี้ยังจับคาร์บอนจากบรรยากาศด้วย สัตว์มีบทบาทสำคัญในการเคลื่อนของสสารและพลังงานผ่านระบบนิเวศ โดยการกินพืชและสัตว์อื่น นอกจากนี้ สัตว์ยังมีอิทธิพลต่อปริมาณพืชและชีวมวลจุลินทรีย์ที่มีอยู่ ตัวสลายสารอินทรีย์ปลดปล่อยคาร์บอนกลับสู่บรรยากาศและเอื้อการเกิดวัฏจักรสารอาหารโดยการแปลงสารอาหารที่สะสมอยู่ในชีวมวลตายกลับสู่รูปที่พร้อมถูกพืชและจุลินทรีย์อื่นใช้ โดยการย่อยสลายสารอินทรีย์ตาย[6] ในธรรมชาติแล้วมีสาร 60 ชนิด ในจำนวน 96 ชนิด หมุนเวียนผ่านเข้าไปในอินทรีย์[7]

ระบบนิเวศมีทั้งปัจจัยภายนอกและภายในควบคุม ปัจจัยภายนอก เช่น ภูมิอากาศ วัสดุกำเนิด (parent material) ซึ่งสร้างดินและภูมิลักษณ์ ควบคุมโครงสร้างโดยรวมของระบบนิเวศและวิธีที่สิ่งต่าง ๆ เกิดในนั้น แต่ปัจจัยดังกล่าวไม่ได้รับอิทธิพลจากระบบนิเวศ ปัจจัยภายนอกอื่นรวมเวลาและชีวชาติศักยะ (potential biota) ระบบนิเวศเป็นสิ่งพลวัต คือ อยู่ภายใต้การรบกวนเป็นระยะและอยู่ในกระบวนการฟื้นตัวจากการรบกวนในอดีตบางอย่าง ระบบนิเวศในสิ่งแวดล้อมคล้ายกันที่ตั้งอยู่ในส่วนของโลกต่างกันสามารถมีลักษณะต่างกันมากเพราะมีชนิดต่างกัน การนำชนิดต่างถิ่นเข้ามาสามารถทำให้เกิดการเลื่อนอย่างสำคัญในการทำหน้าที่ของระบบนิเวศ ปัจจัยภายในไม่เพียงควบคุมกระบวนการของระบบนิเวศ แต่ยังถูกระบบนิเวศควบคุมและมักอยู่ภายใต้วงวนป้อนกลับ (feedback loop) เช่นกัน ขณะที่ทรัพยากรป้อนเข้าปกติถูกกระบวนการภายนอก เช่น ภูมิอากาศและวัสดุกำเนิด ควบคุม แต่การมีทรัพยากรเหล่านี้ในระบบนิเวศถูกปัจจัยภายใน เช่น การผุสลายตัว การแข่งขันรากหรือการเกิดร่ม ควบคุม ปัจจัยภายในอื่นมีการรบกวน การสืบทอด (succession) และประเภทของชนิดที่มี แม้มนุษย์อยู่ในและก่อให้เกิดผลภายในระบบนิเวศ แต่ผลลัพธ์รวมใหญ่พอมีอิทธิพลต่อปัจจัยภายนอกอย่างภูมิอากาศ[8]

ความหลากหลายทางชีวภาพ (biodiversity) เช่นเดียวกับการรบกวนและการสืบทอด มีผลต่อการทำหน้าที่ของระบบนิเวศ ระบบนิเวศให้สินค้าและบริหารต่าง ๆ ที่มนุษย์ต้องการ หลักการการจัดการระบบนิเวศเสนอว่า แทนที่จะจัดการชนิดหนึ่งเพียงชนิดเดียว ควรจัดการทรัพยากรธรรมชาติที่ระดับระบบนิเวศด้วย การจำแนกระบบนิเวศเป็นหน่วยเอกพันธุ์ทางระบบนิเวศ (ecologically homogeneous unit) เป็นขั้นตอนสำคัญสู่การจัดการระบบนิเวศอย่างสัมฤทธิ์ผล แต่ไม่มีวิธีทำวิธีใดวิธีหนึ่งที่ตกลงกัน

กระบวนการระบบนิเวศ[แก้]

ระบบนิเวศประกอบด้วยสิ่งมีชีวิตอะไรบ้าง
ระบบนิเวศประกอบด้วยสิ่งมีชีวิตอะไรบ้าง

ซ้าย: แผนภาพการถ่ายทอดพลังงานของกบ กบเป็นสัญลักษณ์ของปม (node) หนึ่งในสายใยอาหารขยาย พลังงานจากการกินถูกใช้ประโยชน์เพื่อกระบวนการเมแทบอลิซึมแล้วแปลงเป็นชีวมวล การถ่ายทอดพลังงานดำเนินวิถีของมันต่อหากกบถูกนักล่าหรือปรสิตกินต่อ หรือถูกกินเป็นซากสลายในดิน แผนภาพการถ่ายทอดพลังงานนี้แสดงวิธีที่พลังงานเสียไปเพื่อเป็นเชื้อเพลิงกระบวนการเมแทบอลิซึมซึ่งแปลงพลังงานและสารอาหารเป็นชีวมวล
ขวา: โซ่อาหารพลังงานเชื่อมโยงสามขยาย (1. พืช 2. สัตว์กินพืช 3. สัตว์กินเนื้อ) แสดงความสัมพันธ์ระหว่างแผนภาพการถ่ายทอดอาหารและสัดส่วนการแปลงพลังงาน (transformity) สัดส่วนการแปลงพลังงานลดลงจากคุณภาพสูงกว่าเป็นคุณภาพต่ำกว่าเมื่อพลังงานในโซ่อาหารไหลจากชนิดโภชนาการหนึ่งไปอีกชนิดหนึ่ง อักษรย่อ: I=สิ่งป้อนเข้า, A=การนำอาหารไปเสริมสร้างเนื้อเยื่อ, R=การหายใจ, NU=ไม่ถูกใช้ประโยชน์, P=การผลิต, B=ชีวมวล[9]

การถ่ายทอดพลังงาน[แก้]

คาร์บอนและพลังงานซึ่งรวมอยู่ในเนื้อเยื่อพืช (การผลิตปฐมภูมิสุทธิ) ถูกสัตว์บริโภคขณะพืชยังมีชีวิต หรือยังไม่ถูกกินเมื่อเนื้อเยื่อพืชตายและกลายเป็นซากสลาย ในระบบนิเวศบนดิน การผลิตปฐมภูมิสุทธิราว 90% ถูกตัวสลายสารอินทรีย์สลาย ส่วนที่เหลือไม่ถูกสัตว์บริโภคขณะยังมีชีวิตแล้วเข้าสู่ระบบโภชนาการที่มีพืชเป็นฐาน ก็ถูกบริโภคหลังตายแล้วแล้วเข้าระบบโภชนาการที่มีซากสลายเป็นฐาน ในระบบในน้ำ สัดส่วนชีวมวลพืชที่ถูกสัตว์กินพืชบริโภคมีสูงกว่ามาก ในระบบโภชนาการ อินทรีย์สังเคราะห์ด้วยแสงเป็นผู้ผลิตปฐมภูมิ อินทรีย์ที่บริโภคเนื้อเยื่อของผู้ผลิตปฐมภูมิ เรียก ผู้บริโภคปฐมภูมิ ผู้บริโภคลำดับที่หนึ่ง หรือผู้ผลิตทุติยภูมิ คือ สัตว์กินพืช สัตว์ที่กินผู้บริโภคปฐมภูมิ คือ สัตว์กินเนื้อ เป็นผู้บริโภคทุติยภูมิหรือผู้บริโภคลำดับที่สอง ผู้ผลิตและผู้บริโภคเหล่านี้ประกอบเป็นระดับโภชนาการ ลำดับการบริโภค ตั้งแต่พืชถึงสัตว์กินพืช ถึงสัตว์กินเนื้อ ก่อเป็นโซ่อาหาร ระบบจริงซับซ้อนกว่านี้มาก โดยทั่วไปอินทรีย์จะกินอาหารมากกว่าหนึ่งรูป และอาจกินที่ระดับโภชนาการมากกว่าหนึ่งระดับ สัตว์กินเนื้ออาจจับเหยื่อบางส่วนซึ่งเป็นส่วนหนึ่งของระบบโภชนาการที่มีพืชเป็นฐาน และบางส่วนซึ่งเป็นส่วนหนึ่งของระบบโภชนาการที่มีซากสลายเป็นฐาน เช่น นกกินทั้งตั๊กแตนซึ่งเป็นสัตว์กินพืช และไส้เดือนดินซึ่งบริโภคซากสลาย ระบบจริงที่มีบรรดาความซับซ้อนเหล่านี้ ก่อสายใยอาหารแทนโซ่อาหาร

การผุสลายตัว[แก้]

คาร์บอนและสารอาหารที่อยู่ในสารอินทรีย์ที่ตายแล้วจะโดนแบ่งกลุ่มด้วยกระบวนการที่เรียกว่าการสลายตัว สารอาหารที่ได้จากการสลายตัวนั้นสามารถนำกลับมาใช้ได้สำหรับพืชและจุลินทรีย์และอีกส่วนหนึ่งจะกลายเป็นคาร์บอนไดออกไซด์กลับสู่ชั้นบรรยากาศเพื่อใช้ในการสังเคราะห์แสง หากไม่มีการสลายตัวจะมีสารอินทรีย์ที่ตายแล้วและสารอาหารการสะสมอยู่ในระบบและก๊าซคาร์บอนไดออกไซด์ในบรรยากาศก็จะหมดไป[10] ประมาณ 90 % ของอัตราการผลิตปฐมภูมิสุทธิ (Net Primary Productivity : NPP) จะมาจากผู้ย่อยสลายโดยตรง

กระบวนการย่อยสลายสามารถแบ่งออกเป็น 3 ประเภท

  • การกระจายตัวและการเปลี่ยนแปลงทางเคมีของวัตถุที่ตายแล้วเมื่อมีน้ำไหลผ่านสารอินทรีย์ที่ตายแล้ว มันจะละลายและกลายเป็นองค์ประกอบของน้ำซึ่งเป็นสิ่งมีชีวิตที่อยู่ในดิน หรือสิ่งที่อยู่นอกเหนือจากสิ่งที่มีในระบบนิเวศ[10] ใบไม้ที่เพิ่งผลัดใบและสัตว์ที่เพิ่งตายเป็นส่วนที่ทำให้ความเข้มข้นของน้ำเพิ่มมากขึ้นและรวมถึงน้ำตาล กรดอะมิโน และแร่ธาตุ การชะล้างที่สำคัญจะเกิดขึ้นในสภาพแวดล้อมที่เปียกและความสำคัญจะลดลงเมื่อชะล้างที่แห้งแล้ง[10]
  • กระบวนการการแยกชิ้นส่วนโดยการทำให้อินทรีย์วัตถุแตกแล้วกลายเป็นชิ้นส่วนเล็กๆซึ่งทำให้เห็นบริเวณที่จุลินทรีย์กระจายตัว แต่สำหรับใบไม้สดจุลินทรีย์ไม่สามารถเข้าถึงได้เนื่องจากผิวหรือเปลือกไม้และองค์ประกอบเซลล์จะถูกปกป้องไว้ด้วยผนังเซลล์ สำหรับสัตว์ที่เพิ่งตายจะโดนครอบคลุมด้วยโครงกระดูกแข็ง โดยกระบวนการแยกนี้หากชิ้นส่วนที่แตกสามารถผ่านชั้นที่มีการปกป้องนี้ได้ก็จะสามารถช่วยเร่งการย่อยสลายของจุลินทรีย์ได้ดีขึ้น [10]การล่าซากชิ้นส่วนของสัตว์ก็เพื่อนำไปเป็นอาหารเพื่อการดำรงชีพ ซึ่งเปรียบเสมือนเป็นวงจรที่ใช้ทดสอบความคงตัวและวงจรของชิ้นส่วนวัตถุที่ตายแล้วในสภาพแวดล้อมที่เปียกและแห้ง[10]
  • การเปลี่ยนแปลงทางเคมีของสารอินทรีย์ที่ตายส่วนใหญ่จะได้จากแบคทีเรียและการกระทำของเชื้อราเป็นหลัก โดยเส้นใยราจะสร้างเอนไซม์เพื่อสามารถแทรกผ่านโครงสร้างภายนอกของวัตถุอินทรีย์ของพืชที่ตายแล้วได้ อีกทั้งผลิตเอนไซม์เพื่อสลายลิกนินซึ่งช่วยให้มันสามารถผ่านไปยังทั้งสองเซลล์และไปยังไนโตรเจนที่อยู่ในลิกนิน เชื้อราสามารถแลกเปลี่ยนคาร์บอนและไนโตรเจนผ่านเส้นใยที่มีโครงสร้างเป็นร่างแหดังนั้นจึงแตกต่างจากแบคทีเรียและไม่ขึ้นอยู่กับทรัพยากรที่มีอยู่ในบริเวณดังกล่าว[10]

การจัดการระบบนิเวศ[แก้]

การจัดการระบบนิเวศ จะเกิดขึ้นเมื่อมีการจัดการทรัพยากรธรรมชาติ ที่มีในระบบนิเวศมากกว่า 1 ชนิด F. Stuart Chapin ได้นิยามไว้ว่า “การประยุกต์ใช้ศาสตร์ทางนิเวศวิทยาในการจัดการทรัพยากรเพื่อส่งเสริมความยั่งยืนของระบบนิเวศในระยะยาวและ การส่งมอบสินค้าและบริการของระบบนิเวศที่สำคัญ” [11] Norman Christensen และ coauthors นิยามว่า “การจัดการเป้าหมายอย่างชัดเจน ดำเนินการตามนโยบาย ระเบียบการ การปฏิบัติและสามารถปรับตัวได้จากการตรวจสอบและกระบวนการที่จำเป็นเพื่อรักษาโครงสร้างของระบบนิเวศและการวิจัยบนพื้นฐานความเข้าใจที่ดีที่สุดของเรามีปฏิสัมพันธ์ทางนิเวศวิทยา”[12] และ Peter Brussard และ colleaguesนิยามว่า “การจัดการพื้นที่ที่มีความหลากหลายแบบนิเวศบริการและชีวภาพ มีเก็บทรัพยากรเพื่อที่มนุษย์ใช้อย่างเหมาะสมและการดำรงชีวิตที่ยั่งยืน”[13]

แม้ว่าคำจำกัดความของการจัดการระบบนิเวศจะมีมากมาย ได้มีการกำหนดหลักการเพื่อรองรับคำนิยามเหล่านี้[11] ไว้ว่า หลักการพื้นฐานคือการพัฒนาอย่างยั่งยืนในระยะยาวของการผลิตสินค้าและนิเวศบริการ[11] “การพัฒนาอย่างยั่งยืน[ เป็น ] สิ่งที่จำเป็นสำหรับการจัดการ ไม่ใช่ของแถม”[12]นอกจากนี้ยังต้องมีเป้าหมายที่ชัดเจนเกี่ยวกับทางโคจรในอนาคตและพฤติกรรมของระบบการจัดการ ข้อกำหนดสำคัญอื่น ๆ รวมถึงความเข้าใจนิเวศวิทยาเสียงของระบบ,รวมถึงการเชื่อมโยง,การเปลี่ยนแปลงของระบบนิเวศและในบริบทที่เป็นระบบแบบฝังตัว หลักการที่สำคัญอื่น ๆ รวมถึงความเข้าใจเกี่ยวกับบทบาทของมนุษย์เป็นส่วนประกอบของระบบนิเวศและการจัดการที่เหมาะสม[12] ในขณะที่การจัดการระบบนิเวศที่ สามารถนำมาใช้เป็นส่วนหนึ่งของแผนเพื่อการอนุรักษ์ป่าก็ยังสามารถนำมาใช้ใน การจัดการระบบนิเวศ[12] เช่น ระบบนิเวศเกษตร

ภัยคุกคามจากมนุษย์ที่มีต่อระบบนิเวศ[แก้]

ขณะที่ประชากรมนุษย์เติบโตขึ้นเพื่อทำต้องการทรัพยากรที่กำหนดในระบบนิเวศและผลกระทบของรอยเท้าทางนิเวศของมนุษย์ ทรัพยากรธรรมชาติสามารถทำลายได้และใช้ได้อย่างมากมายผลกระทบต่อสิ่งแวดล้อมจากการกระทำของมนุษย์ล้วนเป็นกระบวนการหรือวัสดุที่ได้มาจากการกระทำของมนุษย์ จะส่งผลให้คุณภาพของอากาศและน้ำถูกทำลายมากยิ่งขึ้น รวมถึงการทำการประมงที่มากเกินไปทำให้ศัตรูพืชและโรคระบาทจะขยายพื้นที่มากยิ่งขึ้นเกินการควบคุม และการตัดไม้ทำลายป่าจะก่อให้เกิดน้ำท่วมรุนแรง จากรายงานพบว่าประมาณ 40-50% ของโลกในส่วนที่เป็นชั้นน้ำแข็งได้เปลี่ยนแปลงไปเป็นอย่างมากซึ่งความเสื่อมโทรมนี้ล้วนเกิดจากการกระทำของมนุษย์ และอีก 66% เป็นการทำประมงมากเกินไปของมนุษย์ ในปัจจุบันปริมาณของก๊าซคาร์บอนไดออกไซด์เพิ่มขึ้นกว่า 30% ตั้งแต่มีการทำอุตสาหกรรมต่างๆและในช่วง 2000 ปีที่ผ่านมามีสายพันธุ์ของนกกว่า 25% ที่สูญพันธ์ไป [14] ทำให้สังคมมีการตระหนักถึงผลกระทบมากยิ่งขึ้นจึงก่อให้เกิดนิเวศบริการที่มีไม่จำกัด อย่างไรก็ตามภัยคุกคามส่วนใหญ่มักเกิดจากการกระทำของมนุษย์จึงจำเป็นจะต้องพิจารณาถึงความยั่งยืนของระบบนิเวศในระยะยาวและเพิ่มบทบาทในการเพิ่มที่อยู่อาศัยของมนุษย์เพื่อเป็นกฎในการกระทำการทางเศรษฐกิจ เพื่อเพิ่มเหตุในการตัดสินใจในการทำธุรกิจซึ่งมักจะขึ้นอยู่กับค่าใช้จ่ายที่มนุษย์ได้เลือกใช้ เป็นอีกหนึ่ความท้าท้ายของการกำหนดมูลค่าทางเศรษฐกิจให้กับธรรมชาติอย่างต่อเนื่อง เช่น ธนาคารความหลากหลายทางชีวภาพ เป็นต้น จะเป็นส่วนที่ช่วยให้เกิดการเปลี่ยนแปลงการเรียนรู้อีกสาขาวิชาหนึ่งเพื่อช่วยในการจัดการสภาพแวดล้อม ความรับผิดชอบต่อสังคม โอกาสทางธุรกิจและรวมไปถึงอนาคตของเราเอง

อ้างอิง[แก้]

  1. Tansley (1934); Molles (1999), p. 482; Chapin et al. (2002), p. 380; Schulze et al. (2005); p. 400; Gurevitch et al. (2006), p. 522; Smith & Smith 2012, p. G-5
  2. Odum, EP (1971) Fundamentals of ecology, third edition, Saunders New York, ISBN 0534420664
  3. Schulze et al. (2005), p.400
  4. Chapin et al. (2002), p. 380; Schulze et al. (2005); p. 400
  5. Willis (1997), p. 269; Chapin et al. (2002), p. 5; Krebs (2009). p. 572
  6. Chapin et al. (2002), p. 10
  7. Salisbury and Ross, 1969; Naumov, 1972
  8. Chapin et al. (2002), pp. 11–13
  9. Odum, H. T. (1988). "Self-organization, transformity, and information". Science. 242 (4882): 1132–1139. doi:10.1126/science.242.4882.1132. JSTOR 1702630. PMID 17799729.
  10. ↑ 10.0 10.1 10.2 10.3 10.4 10.5 Chapin et al. (2002), pp. 151–157
  11. ↑ 11.0 11.1 11.2 Chapin et al. (2002), pp. 362–365
  12. ↑ 12.0 12.1 12.2 12.3 อ้างอิงผิดพลาด: ป้ายระบุ <ref> ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อ Christensen1998
  13. Brussard, Peter F.; J. Michael Reed; C. Richard Tracy (1998). "Ecosystem management: what is it really?" (PDF). Landscape and Urban Planning. 40 (1): 9–20. doi:10.1016/S0169-2046(97)00094-7.
  14. Vitousek, P.M., J. Lubchenco, H.A. Mooney, J. Melillo (1997) "Human domination of Earth's ecosystems". Science, 277: 494–499.

ระบบนิเวศมีความสําคัญอย่างไร

ความสำคัญของระบบนิเวศ ด้านการควบคุม (Reregulating services): ระบบนิเวศสามารถควบคุมปรากฏการณ์และกระบวนการทางธรรมชาติ เช่น การควบคุมสภาพภูมิอากาศ การเป็นแหล่งผลิตออกซิเจนของโลก เป็นแหล่งกักเก็บคาร์บอนไดออกไซด์ ช่วยป้องกันการกัดเซาะชายฝั่ง การควบคุมโรคภัยต่างๆ รวมถึงการย่อยสลายของเสียและขยะกลับคืนสู่ธรรมชาติ

สิ่งมีชีวิตในระบบนิเวศชนิดใดจัดเป็นผู้บริโภค

2) ผู้บริโภค (consumer) => สิ่งมีชีวิตที่ไม่สามารถสร้างอาหารได้เอง ต้องกินสิ่งมีชีวิตอื่นเป็นอาหาร เช่น มนุษย์ สัตว์ต่าง ๆ ซึ่งถ้าพิจารณาอาหารที่ผู้บริโภคกิน จะสามารถแบ่งกลุ่มผู้บริโภคออกเป็น 4 ประเภท ได้แก่ 2.1 สิ่งมีชีวิตกินพืช (herbivore) เช่น วัว ช้าง 2.2 สิ่งมีชีวิตกินสัตว์ (carnivore) เช่น เสือดาว สิงโต

องค์ประกอบของสิ่งมีชีวิตที่ไม่มีชีวิตในระบบนิเวศได้แก่อะไรบ้าง

1. ส่วนประกอบที่ไม่มีชีวิต (abiotic component ) ประกอบด้วย อนินทรียสาร ได้แก่ ไนโตรเจน คาร์บอนไดออกไซด์ ออกซิเจน น้ำ และคาร์บอน อินทรียสาร ได้แก่ คาร์โบไฮเดรต โปรตีน ไขมัน ฯลฯ สภาพแวดล้อมทางกายภาพ ได้แก่ อุณหภูมิ แสง ความเป็นกรด เป็นด่าง ความเค็มและความชื้น

ระบบนิเวศของสิ่งมีชีวิตในแต่ละพื้นที่เรียกว่าอะไร

ระบบนิเวศบนบก (Terrestrial Ecosystem) คือ ความสัมพันธ์ของสิ่งมีชีวิตบนภาคพื้นดิน โดยมีปัจจัยทางด้านอุณหภูมิ ปริมาณน้ำฝนและพืชพรรณเป็นหลักในการจำแนกระบบนิเวศต่างๆ เช่น ป่าดิบชื้น ทุ่งหญ้า และทะเลทราย ป่าฝนเขตร้อน ทะเลทราย